

D12.2 User studies for BI's explanation
engine

Contract no. FP7-ICT-247914

Project full title: MOLTO - Multilingual Online

Translation

Deliverable: D12.2 User studies for BI's

explanation engine

Security (distribution level): Public

Contractual date of delivery: 31 May 2013

Actual date of delivery: 31 May 2013

Type: Report

Status & Version Draft, 0.9

Author(s) Joris van Aart, Jeroen Daanen, Jouri

Fledderman, Jeroen van Grondelle,

Menno Gulpers, Emiel van Haandel,

Herko ter Horst, Frank Smit, Xander

Uiterlinden

Task Responsible Be Informed

Abstract

This document outlines the evaluation results from the verbalization techniques

adopted in the verbalization component for the Be Informed Business Platform

based on MOLTO Technologies in WP12 of the MOLTO project. First this document

will focus on the evaluation of the adoption of GF technologies within our

development department. Secondly results of the actual verbalizations will be

presented and discussed.

D12.2 – User studies for BI's explanation engine 1

Table of Contents

1 Introduction 2

1.1 Background 2

1.2 About this Document 3

1.3 Contributors 3

2 Adoption of Grammatical Framework (GF) in Be Informed 4

2.1 Phase 1: Education 4

2.2 Phase 2: Application 5

2.2.1 3D model 5

2.2.2 Grammars 6

2.2.3 Verbalizers 9

2.3 Phase 3: Proposed development model 11

3 Evaluation of Verbalization Techniques based on GF 13

3.1 Background and Evaluation Methodology 13

3.2 Evaluation Methods 13

3.3 Experimental Setup 13

3.4 Results and Discussion 14

2 D12.2 – User studies for BI's explanation engine

1 Introduction

1.1 Background

As the adoption of ontologies into enterprise application environments

grows, new audiences have to deal with ontologies, other than knowledge

engineers and ontologists. These audiences range from business users,

who need to take ownership of the ontologies, to end users, such as

customers or citizens, who are presented with the services based on these

ontologies. As the formalisms themselves are often inaccessible to these

new audiences, appropriate visualizations are important. Our experience

in practice is that business users often overcome their perception of

graph-oriented visualizations being too technical when gaining

experience. However, graph visualizations remain a challenge for

incidental reviewers and end users. Therefore, verbalization of ontologies

into natural language is one of the approaches that is crucial to make

ontologies accessible to new audiences.

Additionally, being able to provide verbalization in a multilingual manner

is important: Governments and enterprise often offer their products and

services in international contexts or to customers of different languages.

For instance, Dutch Immigrations offers many of its services based on

ontologies [ESWC2009], and it typically needs to interface with people

that do not speak Dutch. Also, governments have to deal with numerous

international aspects in legislation when drafting their national laws.

Specifically in Europe, large parts of national legislation are either heavily

influenced by or originates in European legislation. Being able to share

ontologies capturing such international legislation and being able to refer

to them from local ontologies offers important benefits in areas of

productivity and traceability across local practices.

Figure 1. Poor Business User Adoption of Graphical Visualisations

D12.2 – User studies for BI's explanation engine 3

In 2010 Be Informed has developed a verbalization component based on

pattern sentences, that is released as part of our product. It is discussed

in detail in [EKAW2010] and [CNL2010].

The areas that need improving outlined in specifically [CNL2010]

triggered our participation in the MOLTO Project.

1.2 About this Document

This document outlines the requirements that we will need to address

when developing a verbalization component for Be Informed based on

MOLTO Technologies in WP12 of the MOLTO project.

We have chosen a broad, slightly informal style of requirement capturing.

We believe it improves readability and will make the document relevant

for broader audiences. We have tried to capture requirements from a

large number of perspectives. Some requirements apply to the

verbalization component to be developed in WP12, but many also apply to

the functionality that can be based on this component. Although out of

scope for WP12, we believe it is the best way to visualize intended use

and capture the inherently implicit requirements that this might pose on

a technology we do not completely master at this time.

No formal distinction between must have and optional requirements is

made. We believe the document will guide us in leveraging GF to the

maximal extend in the development of a verbalization component in

WP12.

We will use it for WP12 planning and resourcing, both within Be Informed

and in discussions with Chalmers University concerning its role in WP12.

We will also use it when designing the verbalization component based on

GF and the grammars for our four default modeling domains.

This document does not contain a detailed design of the grammars or the

verbalization component, but rather the requirements the grammars

should address.

1.3 Contributors

Editor of this document is Jeroen van Grondelle.

Contributing authors are Joris van Aart, Jeroen Daanen, Jouri

Fledderman, Jeroen van Grondelle, Menno Gulpers, Emiel van Haandel,

Herko ter Horst, Frank Smit and Xander Uiterlinden.

Please direct questions, contributions and ideas to Jeroen van Grondelle

at j.vangrondelle@beinformed.com.

mailto:j.vangrondelle@beinformed.com

4 D12.2 – User studies for BI's explanation engine

2 Adoption of Grammatical Framework (GF) in Be Informed

2.1 Phase 1: Education

With proper education, like a tutor who already knows a lot about the

Grammatical Framework, it takes about a day or two to enable someone

to write a grammar from scratch in GF. The online manual usually

provides the necessary information and if not, the book about GF

probably will. Together with the website, the book and the resource

grammar libraries it is then possible to create an abstract grammar and

multiple concrete grammars for different languages. Even if you lack the

grammatical knowledge about a particular language GF is able to

generate grammatically correct sentences. This is where you see the

Grammatical Framework in its full power, it is fast, reusable and works as

intended.

However, upping the level and thus writing some more complex

grammars, lets you experience the boundaries of the GF as well, for

example the fact that it has a very small community. Information on very

specific topics, such as dependent types, is very limited on the website as

well as in the book. Also the error report sometimes fails to point to the

right direction in these situations. The nice thing is that in these

situations the small, but very dedicated, community is very willing to help

out. The community usually provides an answer within a day, but this

means at the same time that a day is lost waiting for the answer.

For writing grammars we made use of a text editor and for testing them

we used the GF shell. The reason that we did not use any tooling provided

by the community was that we either did not know of their existence or

we did not see an advantage of the tool over the text editor and the

shell. Our goal was to create grammars, build PGF’s and linearize AST’s

directly from our JAVA code. Linearizing AST’s can be done by using JPGF

with an predefined PGF. However because we create grammars on the fly

a PGF should be built from these grammars. Thus the JPGF library was not

suitable for our purposes. Therefore we decided to use the GF-JAVA

library, created by Kaarel Kaljuurand, which allowed us to communicate

with a GF server (either locally or in the cloud) directly from JAVA code.

However, for bandwidth and memory purposes we were asked not to use

the cloud server, so for that reason we use have to start a local GF

server.

This means that the learning curve for GF is low in the very beginning,

since it is fairly easy to start writing grammars and there is plenty of

documentation to help you getting started. However, this curve gets

exponentially higher with more complex grammars. The reason for this is

that the point where the grammars are getting more difficult to write is

D12.2 – User studies for BI's explanation engine 5

the same point where the error handling is providing less clear pointers

and the documentation only covers the basic ideas and not everything in

specific.

2.2 Phase 2: Application

The idea behind the application was to automatically create

verbalizations from ontologies. While domain experts have the knowledge

about a certain law or procedure, they usually lack the knowledge and

skill in reading a Be Informed model. By creating verbalizations from our

models, we provide the domain experts with an easy way to validate if a

law or procedure is modeled correctly. Furthermore, since these

verbalizations are created by filling in the different parts of a triple into

certain slots of a verbalization, a triple can thus be seen as a reusable

proposition. This means that a set of triples used with validation

linearization categories and functions can be used to generate validation

sentences of the model, while the same set of triples in combination with

explanation linearization categories and functions can also be used

generate sentences that explain the model.

In order to be as reusable as possible, the purpose was not only to

verbalize Be Informed ontologies, but to create a general framework to

verbalize ontologies. Choices regarding this reusability are for example:

creating the 3d model together with the university of Bielefeld model

(explained more thoroughly later this paragraph), using the OWL ontology

format besides our own Be Informed ontologies and using open source

tools such as LeMOn, which was created by the Monnet project (John

McRae) and Lemon2GF (Christina Unger).

2.2.1 3D model
Together with the university of Bielefeld the 3D framework (figure 1) was

set up (Van Grondelle & Unger, 2013). This 3D framework states that

verbalizing a certain triple is influenced by three dimensions:

- Domain (business rules, travel, weather)
- Task (query, dialog, explanation, validation)
- Language (English, Dutch, French)

6 D12.2 – User studies for BI's explanation engine

Figure 2: Three dimensional model for conceptually-scoped language

technology

This orthogonal modularization supports specification of the
conceptualization and lexical information per dimension, i.e. specifying
domains independent from tasks and vice versa. The dimensions can then
be freely combined by choosing the particular domains, tasks and
languages supported for a specific application. This allows not only for
the reuse of already existing conceptualizations, such as adding new tasks
to an existing domain or reusing task conceptualizations across different
domains, but steadily increases the return on investment, since the more
of these building blocks already exist, the easier and faster it is to plug
them together to build new applications.

2.2.2 Grammars
While the 3D model states that the dimensions involved in verbalizing a

triple are domain, task and language, the grammars used to verbalize a

triple are not one to one reflections of the dimensions, as can be seen in

figure 2. While the language dimension is not represented as a specific

grammar, this figure shows core grammars which were not specified as a

certain dimension.

The reason that the language dimension is not represented as a grammar

in the framework is because all grammars consist of a functor together

with set a concrete grammars for different languages. In this way the

Resource Grammar Library played a very important role in porting the

grammars to other languages without much effort.

D12.2 – User studies for BI's explanation engine 7

Figure 3: Grammar modularity. Arrows indicate grammar inheritance.

Core Grammars

The core grammar comprises domain- and task-independent expressions,
especially closed class expressions such as determiners, pronouns,
auxiliary verbs, coordination expressions and negation. It can be extended
by libraries that further specify expressions that a domain or a task might
rely on, but that are not required in all application, such as temporal
expressions or conditional and causal statements. The core grammar is
generated manually and can be reused. for every domain and task. It
provides an independent basis on which both domain and task grammars
build, acting as a decoupler between them. The core grammar is divided
into 4 parts: (1) resource grammar, (2) basic grammar, (3) main core
grammar, and (4) component libraries. The resource grammar is made
available by GF trough the resource grammar API. This grammar is
inherited by all other grammars in the library. The second grammar, the
basic grammar, is an extension of the resource grammar that contains
manually defined operations and parameter types. Figure 3 shows a small
part of this so-called basic grammar. Here is shown how a ClassRecord is
defined, which could be used as linearization type in any concrete
grammar, and how the mkClass function can compute from different
argument types a ClassRecord. Furthermore, the basic grammar also
contains operation for the NONE type, which is used when that specific
value in the record is not specified by the argument types.

Figure 4: Overload function for mkClass

8 D12.2 – User studies for BI's explanation engine

The third grammar, core grammar, defines the core categories and
functions The core grammars are complemented with component libraries
that contain the categories and functions specific for a specific ontology
type. The OWL library for example is an extension of the core grammar
that contains OWL specific functions. Such as, a function that expresses
an is-a relation, functions to express cardinality restrictions, and a
function for the owl_Thing.

Domain grammars
The domain grammar extends the core with expressions that are
automatically generated from a given ontology lexicon. The domain
grammar contains all information provided by the domain knowledge (i.e.
domain ontology). Thus it specifies what the classes, individuals, and
relations are given the ontology. The abstract domain grammar contains
the declarations, for this is uses the categories defined in the core
grammar. Therefore, the abstract domain grammar only contains
functions and no categories. Table 2 shows how different OWL URIs are
transformed to functions in a GF abstract grammar. The table shows that
classes are mapped to functions of type Class, individuals are mapped to
functions of type Individual, and object properties are mapped to
functions from two Individuals to a Statement.

 OWL GF abstract syntax

Class
declaration

http://www.beinformed.nl
/owl/ontology#Document

Document : Class

Individual
declaration

http://www.beinformed.nl

/owl/ontology#Intake

Intake : Individual Activity;

Object
property
declaration

http://www.beinformed.nl

/owl/ontology#Creates

Creates : (c1, c2) Individual

c1 Individual c2

Statement

Table 1: Mapping from OWL declaration to GF abstract syntax function

using some examples. The URI of the declaration is used as function

name in GF.

The concrete grammar can be built by using the operations defined in the
basic grammar. A written representation of the OWL declaration is
needed as a lexicalization of the declaration. Every conversion has its
own operations. These are: mkClass for class declarations, mkIndividual
for individual declarations, and mkStatement for objec property
declarations. Table 3 shows an example of how the class declaration
http://www.beinformed.nl/owl/ontology#Document could be written in a
concrete syntax form using the word ‘document’ as the lexical form of
the declaration. The word `activity' is a Noun. As figure 5 shows, mkClass
takes as input a Common Noun (CN). Using the resource grammar, a CN
can be created from a N. This is shown by the concrete syntax in table 2.

D12.2 – User studies for BI's explanation engine 9

 OWL GF abstract syntax

Class
declaration

http://www.beinformed.nl
/owl/ontology#Document

Document = mkClass (mkCN
(mkN “document”));

Table 2: Linearization of Class ‘Document’ in a concrete Be Informed

domain grammar

Task Grammars
task grammars extend the core with task-relevant expressions, such as
question words and constructions in the case of a querying task. As of now
it is created manually, but carrying over the grammar generation pipeline
from the domain to the task dimension and thereby also allowing for the
automatic generation of task grammars constitutes future work. The tasks
on the task dimension are for example: Validation, Explanation, Querying,
Online Dialog etc. These separate task grammars all contain of multiple
categories and functions so that for each of the tasks multiple
linearizations of the same statement can be made. Table 1 shows the
example linearizations for a set of tasks for the triple: Intake (Activity)
creates ApplicationForm (Document).

Task Function Linearization

Query Yes/No Does the intake create
the application form

Query QueryAdv What does the intake
create?

Validation Unless No application form is
created unless the
intake is performed

Validation Generalize The intake creates a
document

Online Dialog 2nd/3rd person I would like to inform
you that the intake
form is created

Explanation Vanilla The application form is
created if the intake is
performed

Table 3: Example linearizations for the triple: Intake (Activity) creates

ApplicationForm (Document).

2.2.3 Verbalizers
While the core and the task grammars are handmade, the domain

grammars are generated automatically. Be Informed has three methods,

called verbalizers from now on, of creating a grammar out of an ontology.

These methods are called: Naïve, Naïve with heuristic and LeMOnAided.

This paragraph discusses each of the verbalizers thoroughly.

Naïve

This process, like the name already suggests, is the most naive process. It

is able to turn a Be Informed or an OWL ontology directly into a

10 D12.2 – User studies for BI's explanation engine

verbalization. In order to do this, it takes the labels from the object

properties, the classes and the named individuals or the Be Informed

equivalents of these entities. In the 3d framework we described Classes,

Individuals and Relations which directly map to these OWL entities. While

an overload function is specified in the Framework to deal with different

labels, this verbalizer does not care for this label variance. It just

assumes that all Classes map to common nouns in GF, all named

individuals map to proper names and all object properties map to

functions that create a statement out of two Individuals.

However, since GF comes with rules on how conjugate verbs and the

labels of the Be Informed models without exception contain a third

person singular verb in present tense, sometimes complemented with the

use of a noun, an adjective or another verb, we encountered a problem.

In order for the naïve verbalizer to overcome this problem we created a

template containing our Tbox relations. These templates are written by

hand once, and since the Be Informed TBox usually does not change, it

works in most cases.

Naïve with heuristic

This verbalizer looks in many ways similar to the completely naive

verbalizer, explained on the previous slide. The classes are rebuild to

CommonNouns, the ObjectProperties get rewritten to functions and the

namedIndividuals to ProperNames. The nice thing though is that it solves

the problem on the verbs in a completely different manner. It has an

integrated lemmatizer for English, which can retrieve most infinitive

forms of verbs automatically. Also is contains an aggregation to

concatenate sentences that have the same subject individual and

function, so that the verbalizations look more natural.

LemonAided

For the LemonAided verbalizer, An Earley parser is implemented to obtain

the lexical information from within each of the labels. Also this verbalizer

contains a lemmatizer for both English and Dutch in order to not only

rewrite the verbs in the functions, but also to rewrite the verbs that

occur inside labels of individuals. All the entities, together with their

identifiers, lexical enrichments and lexical adaptations get written into

scala entries and get passed to LeMOn (John McRae) and LeMOn2GF

(Christina Unger). LeMOn builds a so-called frame around each of the

scala entries depending on both the syntactical information. This frame is

later used by LeMOn2GF in order to create verbalizations in GF that can

deal with label variance.

D12.2 – User studies for BI's explanation engine 11

2.3 Phase 3: Proposed development model

Every grammar generation technique described above, has its own

strength and weaknesses. Some methods required a small amount of

engineering while others require more. However, the quality of the

sentences of some methods should be better than other methods.

When developing the different components, we found that different

chains could be implemented depending on what components are used

from start to goal, i.e. from Be Informed model to grammar. Therefore

we propose an open source development model for language

technologies. Figure 5 shows this model, together with the components as

described earlier. The model contains an interface for different

resources, such as OWL, GF, Be Informed model, Lemon, etc. The other

interface in this model is de processor interface. This is the interface that

is implemented by the different component as described above. Every

component has a from and a to. For example, the naïve method takes a

Be Informed model and produces a GF grammar. The resource pool

implementation registers different processors, and defines a start

resource and a goal resource. From that point it start searching in the list

of registered components if there is a component that creates a resource

which is equal to the goal resource. If that the start resource is equal to

the input resource of the processor, this processor could be used to get

from start to goal. If this is not the case, the input resource of that

processor becomes the new temporary goal, and the resource pool uses

recursion to find a processor that takes as input the start resource and as

output the temporary goal resource. This continues until a path is found

from start resource to goal resource.

Figure 5. Component model

The whole idea of this model is that everybody could contribute their

processor components. For example, new methods that implement

another way of lexicalizing ontology labels could be added to the model

just by implement it as a processor. A stable version could be created

getFromMimeType()
getToMimeType()
getSupportedLanguages()

Processor

registerProcessor(Processor)
registerResource(URI, mimetype, lang, File)
getResource(URI, mimeType, lang);

ResourcePool

Lemon2GF

lemon ->

GF

Naive With
Lemmatizer

owl -> GF

OWL,

GF,

lemon,

etc.

<Translators>

T

<Translators>

T

Lemon
Patterns

lemon

patterns

-> lemon

LemonAided

Be

Informed

-> lemon

patterns

Naive

Be

Informed

-> GF

Velocity

Be Informed

-> Verbalization

OWL Export

Be Informed

-> owl

registerProcessor(OWLExport)
registerProcessor(NaiveWithLemmatizer)
registerResource(BIModel)

 if (processor.getToMimeType() == goal) {
 ...
} else {
 backchain …
}

12 D12.2 – User studies for BI's explanation engine

from the different components to be used for other researchers or

businesses.

D12.2 – User studies for BI's explanation engine 13

3 Evaluation of Verbalization Techniques based on GF

3.1 Background and Evaluation Methodology

The different methods proposed earlier, including the baseline method,

all generate sentences that are different in quality. To evaluate the

quality of the sentences, a language model could be used that calculates

the likelihood of the test sentences given a corpus of training sentences.

By comparing the likelihood scores of every method, a better

understanding of the quality of the different methods could be acquired.

Below the evaluation method and the experimental setup are described,

and the results are discussed.

3.2 Evaluation Methods

The idea behind a language model is that the probability of a word in a

sentence can be determined given all the previous words in the sentence,

i.e. P(wn | w1, w2, w3, .., wn-1). This calculation, however, could be

simplified by assuming that the nth word in a sentence only depends on

the previous words (bigram) or the previous two words (trigram), i.e.

Markov assumption.

The probability of a sentence can then be calculated by multiplying the

probabilities of every bigram/trigram in the sentence. For example,

P(w1, w2, w3, w4) = P(w1 | <s>) * P(w2 | w1) * P(w3 | w2) * P(w4 | w3) *

(</s> | w4), using a bigram model. Here the <s> indicates the start of a

sentence and </s> the end.

The probabilities, such as P(w2 | w1), could be calculated given a corpus

of sentences. In this particular case, P(w2 | w1) = P(w1, w2) / P(w1).

P(w1, w2) and P(w1) could be calculated by counting the number of

occurrences in a corpus.

3.3 Experimental Setup

To be able to perform the evaluation, a Python script was implemented

using NLTK (http://nltk.org). NLTK provides a module called Ngram

(http://nltk.googlecode.com/svn/trunk/doc/api/nltk.model.ngram.Ngra

mModel-class.html) which could build a Ngram model given a corpus. The

eurparl corpus (http://www.statmt.org/europarl/), Dutch-English, was

used for all experiments. Where the English part of the corpus was used

to evaluate English sentences, and the Dutch part for evaluating Dutch

sentences. Also for all experiments a trigram model was trained given the

corpus.

http://nltk.org/
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.model.ngram.NgramModel-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.model.ngram.NgramModel-class.html
http://www.statmt.org/europarl/

14 D12.2 – User studies for BI's explanation engine

Four experiments were conducted using the parameters as described

above. Every experiment evaluated for one method each sentences using

the trained language model. These sentences were created by using the

Housing Benefit model as modelled in Be Informed. An OWL export was

also created of this model. The result of each experiment is a scatterplot

of the sentence probabilities. The sentences produced by the Velocity

method are used as a baseline method, due to the fact that it does not

rely on GF.

3.4 Results and Discussion

Figure 7 and 8 show the result for English and Dutch sentences

respectively. Figure 7 shows that the spread of the scores for the Velocity

verbalizers in English is way more skewed than the spread of the

verbalizers making use of GF. Also for the Dutch sentences the GF

verbalizers have a more equal spread than the Velocity verbalizers.

Notice however that the scores for the naïve with heuristic verbalizer are

not taken into account for the Dutch sentences. Since we did not have a

lemmatizer for Dutch, we were not able to create sentences in Dutch

with this verbalizer.

Figure 6. Bar chart showing the likelihood of the sentences for English

per verbalizer

Figure 7. Bar chart showing the likelihood of the sentences in Dutch per

verbalizer

D12.2 – User studies for BI's explanation engine 15

The reason for the differences between the two types of verbalizers

(Velocity and GF based) is that while GF has a robust way of generating

equally correct sentences for much broader variety of sentences than the

velocity templates. Together with the fact that the framework we

created for GF verbalizations is more reusable, maintainable and

manageable than the velocity templates simply makes GF the far more

preferable choice.

Wapenrustlaan 11-31
7321 DL Apeldoorn

The Netherlands
T +31 (0)55 368 14 20

E
info@beinformed.com
www.beinformed.com

About Be Informed

Be Informed is an internationally operating, independent

software vendor. The Be Informed business process platform

supports administrative processes, which are becoming

increasingly knowledge-intensive. Thanks to Be Informed’s unique

approach to dynamic case management, the next wave after

business process management, organizations using Be Informed

often report cost savings of tens of percents. Further benefits

include a much higher straight-through processing rate leading to

vastly improved productivity, and a reduction in time-to-change

from months to days.

